Tag Archives: learning

Buckets of data for MERL

by Linda Raftree, Independent Consultant and MERL Tech Organizer

It can be overwhelming to get your head around all the different kinds of data and the various approaches to collecting or finding data for development and humanitarian monitoring, evaluation, research and learning (MERL).

Though there are many ways of categorizing data, lately I find myself conceptually organizing data streams into four general buckets when thinking about MERL in the aid and development space:

  1. ‘Traditional’ data. How we’ve been doing things for(pretty much)ever. Researchers, evaluators and/or enumerators are in relative control of the process. They design a specific questionnaire or a data gathering process and go out and collect qualitative or quantitative data; they send out a survey and request feedback; they do focus group discussions or interviews; or they collect data on paper and eventually digitize the data for analysis and decision-making. Increasingly, we’re using digital tools for all of these processes, but they are still quite traditional approaches (and there is nothing wrong with traditional!).
  2. ‘Found’ data.  The Internet, digital data and open data have made it lots easier to find, share, and re-use datasets collected by others, whether this is internally in our own organizations, with partners or just in general.These tend to be datasets collected in traditional ways, such as government or agency data sets. In cases where the datasets are digitized and have proper descriptions, clear provenance, consent has been obtained for use/re-use, and care has been taken to de-identify them, they can eliminate the need to collect the same data over again. Data hubs are springing up that aim to collect and organize these data sets to make them easier to find and use.
  3. ‘Seamless’ data. Development and humanitarian agencies are increasingly using digital applications and platforms in their work — whether bespoke or commercially available ones. Data generated by users of these platforms can provide insights that help answer specific questions about their behaviors, and the data is not limited to quantitative data. This data is normally used to improve applications and platform experiences, interfaces, content, etc. but it can also provide clues into a host of other online and offline behaviors, including knowledge, attitudes, and practices. One cautionary note is that because this data is collected seamlessly, users of these tools and platforms may not realize that they are generating data or understand the degree to which their behaviors are being tracked and used for MERL purposes (even if they’ve checked “I agree” to the terms and conditions). This has big implications for privacy that organizations should think about, especially as new regulations are being developed such a the EU’s General Data Protection Regulations (GDPR). The commercial sector is great at this type of data analysis, but the development set are only just starting to get more sophisticated at it.
  4. ‘Big’ data. In addition to data generated ‘seamlessly’ by platforms and applications, there are also ‘big data’ and data that exists on the Internet that can be ‘harvested’ if one only knows how. The term ‘Big data’ describes the application of analytical techniques to search, aggregate, and cross-reference large data sets in order to develop intelligence and insights. (See this post for a good overview of big data and some of the associated challenges and concerns). Data harvesting is a term used for the process of finding and turning ‘unstructured’ content (message boards, a webpage, a PDF file, Tweets, videos, comments), into ‘semi-structured’ data so that it can then be analyzed. (Estimates are that 90 percent of the data on the Internet exists as unstructured content). Currently, big data seems to be more apt for predictive modeling than for looking backward at how well a program performed or what impact it had. Development and humanitarian organizations (self included) are only just starting to better understand concepts around big data how it might be used for MERL. (This is a useful primer).

Thinking about these four buckets of data can help MERL practitioners to identify data sources and how they might complement one another in a MERL plan. Categorizing them as such can also help to map out how the different kinds of data will be responsibly collected/found/harvested, stored, shared, used, and maintained/ retained/ destroyed. Each type of data also has certain implications in terms of privacy, consent and use/re-use and how it is stored and protected. Planning for the use of different data sources and types can also help organizations choose the data management systems needed and identify the resources, capacities and skill sets required (or needing to be acquired) for modern MERL.

Organizations and evaluators are increasingly comfortable using mobile and/or tablets to do traditional data gathering, but they often are not using ‘found’ datasets. This may be because these datasets are not very ‘find-able,’ because organizations are not creating them, re-using data is not a common practice for them, the data are of questionable quality/integrity, there are no descriptors, or a variety of other reasons.

The use of ‘seamless’ data is something that development and humanitarian agencies might want to get better at. Even though large swaths of the populations that we work with are not yet online, this is changing. And if we are using digital tools and applications in our work, we shouldn’t let that data go to waste if it can help us improve our services or better understand the impact and value of the programs we are implementing. (At the very least, we had better understand what seamless data the tools, applications and platforms we’re using are collecting so that we can manage data privacy and security of our users and ensure they are not being violated by third parties!)

Big data is also new to the development sector, and there may be good reason it is not yet widely used. Many of the populations we are working with are not producing much data — though this is also changing as digital financial services and mobile phone use has become almost universal and the use of smart phones is on the rise. Normally organizations require new knowledge, skills, partnerships and tools to access and use existing big data sets or to do any data harvesting. Some say that big data along with ‘seamless’ data will one day replace our current form of MERL. As artificial intelligence and machine learning advance, who knows… (and it’s not only MERL practitioners who will be out of a job –but that’s a conversation for another time!)

Not every organization needs to be using all four of these kinds of data, but we should at least be aware that they are out there and consider whether they are of use to our MERL efforts, depending on what our programs look like, who we are working with, and what kind of MERL we are tasked with.

I’m curious how other people conceptualize their buckets of data, and where I’ve missed something or defined these buckets erroneously…. Thoughts?

Six priorities for the MERL Tech community

by Linda Raftree, MERL Tech Co-organizer

IMG_4636Participants at the London MERL Tech conference in February 2017 crowdsourced a MERL Tech History timeline (which I’ve shared in this post). Building on that, we projected out our hopes for a bright MERL Tech Future. Then we prioritized our top goals as a group (see below). We’ll aim to continue building on these as a sector going forward and would love more thoughts on them.

  1. Figure out how to be responsible with digital data and not put people, communities, vulnerable groups at risk. Subtopics included: share data with others responsibly without harming anyone; agree minimum ethical standard for MERL and data collection; agree principles for minimizing data we collect so that only essential data is captured, develop duty of care principles for MERL Tech and digital data; develop ethical data practices and policies at organization levels; shift the power balance so that digital data convenience costs are paid by orgs, not affected populations; develop a set of quality standards for evaluation using tech
  2. Increase data literacy across the sector, at individual level and within the various communities where we are working.
  3. Overcome the extraction challenge and move towards true downward accountability. Do good user/human centered design and planning together, be ‘leaner’ and more user-focused at all stages of planning and MERL. Subtopics included: development of more participatory MERL methods; bringing consensus decision-making to participatory MERL; realizing the potential of tech to shift power and knowledge hierarchies; greater use of appreciative inquiry in participatory MERL; more relevant use of tech in MERL — less data, more empowering, less extractive, more used.
  4. Integrate MERL into our daily opfor blogerations to avoid the thinking that it is something ‘separate;’ move it to the core of operations management and make sure we have the necessary funds to do so; demystify it and make it normal! Subtopics included that: we’ve stopped calling “MERL” a “thing” and the norm is to talk about monitoring as part of operations; data use is enabling real-time coordination; no more paper based surveys.
  5. Improve coordination and interoperability as related to data and tools, both between organizations and within organizations. Subtopics included: more interoperability; more data-sharing platforms; all data with suitable anonymization is open; universal exchange of machine readable M&E Data (e.g., standards? IATI? a platform?); sector-wide IATI compliance; tech solutions that enable sharing of qualitative and quantitative data; systems of use across agencies; e.g., to refer feedback; coordination; organizations sharing more data; interoperability of tools. It was emphasized that donors should incentivize this and ensure that there are resources to manage it.
  6. Enhance user-driven and accessible tech that supports impact and increases efficiency, that is open source and can be built on, and that allows for interoperability and consistent systems of measurement and evaluation approaches.

In order to move on these priorities, participants felt we needed better coordination and sharing of tools and lessons among the NGO community. This could be through a platform where different innovations and tools are appropriately documented so that donors and organizations can more easily find good practice, useful tools and get a sense of ‘what’s out there’ and what it’s being used for. This might help us to focus on implementing what is working where, when, why and how in M&E (based on a particular kind of context) rather than re-inventing the wheel and endlessly pushing for new tools.

Participants also wanted to see MERL Tech as a community that is collaborating to shape the field and to ensure that we are a sector that listens, learns, and adopts good practices. They suggested hosting MERL Tech events and conferences in ‘the South;’ and building out the MERL Tech community to include greater representation of users and developers in order to achieve optimal tools and management processes.

What do you think – have we covered it all? What’s missing?

Thoughts from MERL Tech UK

merltech_uk-2016Post by Christopher Robert, Dobility (Survey CTO)

MERL Tech UK was held in London this week. It was a small, intimate gathering by conference standards (just under 100 attendees), but jam-packed full of passion, accumulated wisdom, and practical knowledge. It’s clear that technology is playing an increasingly useful role in helping us with monitoring, evaluation, accountability, research, and learning – but it’s also clear that there’s plenty of room for improvement. As a technology provider, I walked away with both more inspiration and more clarity for the road ahead.

Some highlights:

  • I’ve often felt that conferences in the ICT4D space have been overly-focused on what’s sexy, shiny, and new over what’s more boring, practical, and able to both scale and sustain. This conference was markedly different: it exceeded even the tradition of prior MERL Tech conferences in shifting from the pathology of “pilotitus” to a more hard-nosed focus on what really works.
  • There was more talk of data responsibility, which I took as another welcome sign of maturation in the space. This idea encompasses much beyond data security and the honoring of confidentiality assurances that we at Dobility/SurveyCTO have long championed, and it amounted to a rare delight: rather than us trying to push greater ethical consideration on others, for once we felt that our peers were pushing us to raise the bar even further. My own ideas in terms of data responsibility were challenged, and I came to realize that data security is just one piece of a larger ethical puzzle.
  • There are far fewer programs and projects re-inventing the wheel in terms of technology, which is yet another welcome sign of maturation. This is helping more resources to flow into the improvement and professionalization of a small but diverse set of technology platforms. Too much donor money still seems to be spent on technologies that have effective, well-established, and sustainable options available, but it’s getting better.
  • However, it’s clear that there are still plenty of ways to re-invent the wheel, and plenty of opportunities for greater collaboration and learning in the space. Most organizations are having to go it alone in terms of procuring and managing devices, training and supporting field teams, designing and monitoring data-collection activities, organizing and managing collected data, and more. Some larger international organizations who adopted digital technologies early have built up some impressive institutional capacity – but every organization still has its gaps and challenges, later adopters don’t have that historical capacity from which to draw, and smaller organizations don’t have the same kind of centralized institutional capacity.
  • Fortunately, MERL Tech organizers and participants like Oxfam GB and World Bank DIME have not only built tremendous internal capacity, but also been extremely generous in thinking through how to share that capacity with others. They share via their blogs and participation in conferences like this, and they are always thinking about new and more effective ways to share. That’s both heartening and inspiring.

I loved the smaller, more intimate nature of MERL Tech UK, but I have quickly come to somewhat regret that it wasn’t substantially larger. My first London day post-MERL-Tech was spent visiting with some other SurveyCTO users, including a wonderfully-well-attended talk on data quality at the Zoological Society of London, a meeting with some members of Imperial College London’s Schistosomiasis Control Initiative, and a discussion about some new University of Cambridge efforts to improve data and research on rare diseases in the UK. Later today, I’ll meet with some members of the TUMIKIA project team at the London School of Hygiene and Tropical Medicine, and in retrospect I now wish that all of these others had been at MERL Tech. I’m trying to share lessons as best I can, but it’s obvious that so many other organizations could both contribute to and profit from the kinds of conversations and sharing that were happening at MERL Tech.

Personally, I’ve always been distrustful of product user conferences as narrow, ego-driven, sales-and-marketing kinds of affairs, but I’m suddenly seeing how a SurveyCTO user conference could make real (social) sense. Our users are doing such incredible things, learning so much in the process, building up so much capacity – and so many of them are also willing to share generously with others. The key is providing mechanisms for that sharing to happen. At Dobility, we’ve just kept our heads down and stayed focused on providing and supporting affordable, accessible technology, but now I’m seeing that we could play a greater role in facilitating greater progress in the space. With thousands of SurveyCTO projects now in over 130 countries, the amount of learning – and the potential social benefits to sharing more – is enormous. We’ll have to think about how we can get better and better about helping. And please comment here if you have ideas for us!

Thanks again to Oxfam GB, Comic Relief, and everybody else who made MERL Tech UK possible. It was a wonderful event.