Tag Archives: research

What’s Happening with Tech and MERL?

by Linda Raftree, Independent Consultant and MERL Tech organizer

Back in 2014, the humanitarian and development sectors were in the heyday of excitement over innovation and Information and Communication Technologies for Development (ICT4D). The role of ICTs specifically for monitoring, evaluation, research and learning (aka “MERL Tech“) had not been systematized (as far as I know), and it was unclear whether there actually was “a field.” I had the privilege of writing a discussion paper with Michael Bamberger to explore how and why new technologies were being tested and used in the different steps of a traditional planning, monitoring and evaluation cycle. (See graphic 1 below, from our paper).

The approaches highlighted in 2014 focused on mobile phones, for example: text messages (SMS), mobile data gathering, use of mobiles for photos and recording, mapping with specific handheld global positioning systems (GPS) devices or GPS installed in mobile phones. Promising technologies included tablets, which were only beginning to be used for M&E; “the cloud,” which enabled easier updating of software and applications; remote sensing and satellite imagery, dashboards, and online software that helped evaluators do their work more easily. Social media was also really taking off in 2014. It was seen as a potential way to monitor discussions among program participants, gather feedback from program participants, and considered an underutilized tool for greater dissemination of evaluation results and learning. Real-time data and big data and feedback loops were emerging as ways that program monitoring could be improved, and quicker adaptation could happen.

In our paper, we outlined five main challenges for the use of ICTs for M&E: selectivity bias; technology- or tool-driven M&E processes; over-reliance on digital data and remotely collected data; low institutional capacity and resistance to change; and privacy and protection. We also suggested key areas to consider when integrating ICTs into M&E: quality M&E planning, design validity; value-add (or not) of ICTs; using the right combination of tools; adapting and testing new processes before role-out; technology access and inclusion; motivation to use ICTs, privacy and protection; unintended consequences; local capacity; measuring what matters (not just what the tech allows you to measure); and effectively using and sharing M&E information and learning.

We concluded that:

  • The field of ICTs in M&E is emerging and activity is happening at multiple levels and with a wide range of tools and approaches and actors. 
  • The field needs more documentation on the utility and impact of ICTs for M&E. 
  • Pressure to show impact may open up space for testing new M&E approaches. 
  • A number of pitfalls need to be avoided when designing an evaluation plan that involves ICTs. 
  • Investment in the development, application and evaluation of new M&E methods could help evaluators and organizations adapt their approaches throughout the entire program cycle, making them more flexible and adjusted to the complex environments in which development initiatives and M&E take place.

Where are we now:  MERL Tech in 2019

Much has happened globally over the past five years in the wider field of technology, communications, infrastructure, and society, and these changes have influenced the MERL Tech space. Our 2014 focus on basic mobile phones, SMS, mobile surveys, mapping, and crowdsourcing might now appear quaint, considering that worldwide access to smartphones and the Internet has expanded beyond the expectations of many. We know that access is not evenly distributed, but the fact that more and more people are getting online cannot be disputed. Some MERL practitioners are using advanced artificial intelligence, machine learning, biometrics, and sentiment analysis in their work. And as smartphone and Internet use continue to grow, more data will be produced by people around the world. The way that MERL practitioners access and use data will likely continue to shift, and the composition of MERL teams and their required skillsets will also change.

The excitement over innovation and new technologies seen in 2014 could also be seen as naive, however, considering some of the negative consequences that have emerged, for example social media inspired violence (such as that in Myanmar), election and political interference through the Internet, misinformation and disinformation, and the race to the bottom through the online “gig economy.”

In this changing context, a team of MERL Tech practitioners (both enthusiasts and skeptics) embarked on a second round of research in order to try to provide an updated “State of the Field” for MERL Tech that looks at changes in the space between 2014 and 2019.

Based on MERL Tech conferences and wider conversations in the MERL Tech space, we identified three general waves of technology emergence in MERL:

  • First wave: Tech for Traditional MERL: Use of technology (including mobile phones, satellites, and increasingly sophisticated data bases) to do ‘what we’ve always done,’ with a focus on digital data collection and management. For these uses of “MERL Tech” there is a growing evidence base. 
  • Second wave:  Big Data. Exploration of big data and data science for MERL purposes. While plenty has been written about big data for other sectors, the literature on the use of big data and data science for MERL is somewhat limited, and it is more focused on potential than actual use. 
  • Third wave:  Emerging approaches. Technologies and approaches that generate new sources and forms of data; offer different modalities of data collection; provide ways to store and organize data, and provide new techniques for data processing and analysis. The potential of these has been explored, but there seems to be little evidence base to be found on their actual use for MERL. 

We’ll be doing a few sessions at the American Evaluation Association conference this week to share what we’ve been finding in our research. Please join us if you’ll be attending the conference!

Session Details:

Thursday, Nov 14, 2.45-3.30pm: Room CC101D

Friday, Nov 15, 3.30-4.15pm: Room CC101D

Saturday, Nov 16, 10.15-11am. Room CC200DE

Creating and Measuring Impact in Digital Social and Behavior Change Communication 

By Jana Melpolder

People are accessing the Internet, smartphones, and social media like never before, and the social and behavior change communication community is exploring the use of digital tools and social media for influencing behavior. The MERL Tech session, “Engaging for responsible change in a connected world: Good practices for measuring SBCC impact” was put together by Linda Raftree, Khwezi Magwaza, and Yvonne MacPherson, and it set out to help dive into Digital Social and Behavior Change Communication (SBCC).

Linda is the MERL Tech Organizer, but she also works as an independent consultant. She has worked as an Advisor for Girl Effect on research and digital safeguarding in digital behavior change programs with adolescent girls. She also recently wrote a landscaping paper for iMedia on Digital SBCC. Linda opened the session by sharing lessons from the paper, complemented by learning drawn from research and practice at Girl Effect.

Linda shares good practices from a recent landscape report on digital SBCC.

Digital SBCC is expanding due to smartphone access. In the work with Girl Effect, it was clear that even when girls in lower income communities did not own smartphones they often borrowed them. Project leaders should consider several relevant theories on influencing human behavior, such as social cognitive theory, behavioral economics, and social norm theory. Additionally, an ethical issue in SBCC projects is whether there is transparency about the behavior change efforts an organization is carrying out, and whether people even want their behaviors to be challenged or changed.

When it comes to creating a SBCC project, Linda shared a few tips: 

  • Users are largely unaware of data risks when sharing personal information online
  • We need to understand peoples’ habits. Being in tune with local context is important, as is design for habits, preferences, and interests.
  • Avoid being fooled by vanity metrics. For example, even if something had a lot of clicks, how do you know an action was taken afterwards? 
  • Data can be sensitive to deal with. For some, just looking at information online, such as facts on contraception, can put them at risk. Be sure to be careful of this when developing content.

The session’s second presenter was Khwezi Magwaza who has worked as a writer and radio, digital, and television producer. She worked as a content editor for Praekelt.org and also served as the Content Lead at Girl Effect. Khwezi is currently providing advisory to an International Rescue Committee platform in Tanzania that aims to support improved gender integration in refugee settings. Lessons from Khwezi from working in digital SBCC included:

  • Sex education can be taboo, and community healthcare workers are often people’s first touch point. 
  • There is a difference between social behavior change and, more precisely, individual behavior change. 
  • People and organizations working in SBCC need to think outside the box and learn how to measure it in non-traditional ways. 
  • Just because something is free doesn’t mean people will like it. We need to aim for high quality, modern, engaging content when creating SBCC programs.
  • It’s also critical to hire the right staff. Khwezi suggested building up engineering capacity in house rather than relying entirely on external developers. Having a digital company hand something over to you that you’re stuck with is like inheriting a dinosaur. Organizations need to have a real working relationship with their tech supplier and to make sure the tech can grow and adapt as the program does.
Panelists discuss digital SBCC with participants.

The third panelist from the session was Yvonne MacPherson, the U.S. Director of BBC Media Action, which is the BBC’s international NGO that was made to use communication and media to further development. Yvonne noted that:

  • Donors often want an app, but it’s important to push back on solely digital platforms. 
  • Face-to-face contact and personal connections are vital in programs, and social media should not be the only form of communication within SBCC programs.
  • There is a need to look at social media outreach experiences from various sectors to learn, but that the contexts that INGOs and national NGOs are working in is different from the environments where most people with digital engagement skills have worked, so we need more research and it’s critical to understand local context and behaviors of the populations we want to engage.
  • Challenges are being seen with so-called “dark channels,” (WhatsApp, Facebook Messenger) where many people are moving and where it becomes difficult to track behaviors. Ethical issues with dark channels have also emerged, as there are rich content options on them, but researchers have yet to figure out how to obtain consent to use these channels for research without interrupting the dynamic within channels.

I asked Yvonne if, in her experience and research, she thought Instagram or Facebook influencers (like celebrities) influenced young girls more than local community members could. She said there’s really no one answer for that one. There actually needs to be a detailed ethnographic research or study to understand the local context before making any decisions on design of an SBCC campaign. It’s critical to understand the target group — what ages they are, where do they come from, and other similar questions.

Resources for the Reader

To learn more about digital SBCC check out these resources, or get in touch with each of the speakers on Twitter:

Join us for MERL Tech DC, Sept 5-6th!

MERL Tech DC: Taking Stock

September 5-6, 2019

FHI 360 Academy Hall, 8th Floor
1825 Connecticut Avenue NW
Washington, DC 20009

We gathered at the first MERL Tech Conference in 2014 to discuss how technology was enabling the field of monitoring, evaluation, research and learning (MERL). Since then, rapid advances in technology and data have altered how most MERL practitioners conceive of and carry out their work. New media and ICTs have permeated the field to the point where most of us can’t imagine conducting MERL without the aid of digital devices and digital data.

The rosy picture of the digital data revolution and an expanded capacity for decision-making based on digital data and ICTs has been clouded, however, with legitimate questions about how new technologies, devices, and platforms — and the data they generate — can lead to unintended negative consequences or be used to harm individuals, groups and societies.

Join us in Washington, DC, on September 5-6 for this year’s MERL Tech Conference where we’ll be taking stock of changes in the space since 2014; showcasing promising technologies, ideas and case studies; sharing learning and challenges; debating ideas and approaches; and sketching out a vision for an ideal MERL future and the steps we need to take to get there.

Conference strands:

Tech and traditional MERL:  How is digital technology enabling us to do what we’ve always done, but better (consultation, design, community engagement, data collection and analysis, databases, feedback, knowledge management)? What case studies can be shared to help the wider sector learn and grow? What kinks do we still need to work out? What evidence base exists that can support us to identify good practices? What lessons have we learned? How can we share these lessons and/or skills with the wider community?

Data, data, and more data: How are new forms and sources of data allowing MERL practitioners to enhance their work? How are MERL Practitioners using online platforms, big data, digitized administrative data, artificial intelligence, machine learning, sensors, drones? What does that mean for the ways that we conduct MERL and for who conducts MERL? What concerns are there about how these new forms and sources of data are being used and how can we address them? What evidence shows that these new forms and sources of data are improving MERL (or not improving MERL)? What good practices can inform how we use new forms and sources of data? What skills can be strengthened and shared with the wider MERL community to achieve more with data?

Emerging tools and approaches: What can we do now that we’ve never done before? What new tools and approaches are enabling MERL practitioners to go the extra mile? Is there a use case for blockchain? What about facial recognition and sentiment analysis in MERL? What are the capabilities of these tools and approaches? What early cases or evidence is there to indicate their promise? What ideas are taking shape that should be tried and tested in the sector? What skills can be shared to enable others to explore these tools and approaches? What are the ethical implications of some of these emerging technological capabilities?

The Future of MERL: Where should we be going and what should the future of MERL look like? What does the state of the sector, of digital data, of technology, and of the world in which we live mean for an ideal future for the MERL sector? Where do we need to build stronger bridges for improved MERL? How should we partner and with whom? Where should investments be taking place to enhance MERL practices, skills and capacities? How will we continue to improve local ownership, diversity, inclusion and ethics in technology-enabled MERL? What wider changes need to happen in the sector to enable responsible, effective, inclusive and modern MERL?

Cross-cutting themes include diversity, inclusion, ethics and responsible data, and bridge-building across disciplines.

Submit your session ideas, register to attend the conference, or reserve a demo table for MERL Tech DC now!

You’ll join some of the brightest minds working on MERL across a wide range of disciplines – evaluators, development and humanitarian MERL practitioners, small and large non-profit organizations, government and foundations, data scientists and analysts, consulting firms and contractors, technology developers, and data ethicists – for 2 days of in-depth sharing and exploration of what’s been happening across this multidisciplinary field and where we should be heading.

Report back on MERL Tech DC

Day 1, MERL Tech DC 2018. Photo by Christopher Neu.

The MERL Tech Conference explores the intersection of Monitoring, Evaluation, Research and Learning (MERL) and technology. The main goals of “MERL Tech” as an initiative are to:

  • Transform and modernize MERL in an intentionally responsible and inclusive way
  • Promote ethical and appropriate use of tech (for MERL and more broadly)
  • Encourage diversity & inclusion in the sector & its approaches
  • Improve development, tech, data & MERL literacy
  • Build/strengthen community, convene, help people talk to each other
  • Help people find and use evidence & good practices
  • Provide a platform for hard and honest talks about MERL and tech and the wider sector
  • Spot trends and future-scope for the sector

Our fifth MERL Tech DC conference took place on September 6-7, 2018, with a day of pre-workshops on September 5th. Some 300 people from 160 organizations joined us for the 2-days, and another 70 people attended the pre-workshops.

Attendees came from a wide diversity of professions and disciplines:

What professional backgrounds did we see at MERL Tech DC in 2018?

An unofficial estimate on speaker racial and gender diversity is here.

Gender balance on panels

At this year’s conference, we focused on 5 themes (See the full agenda here):

  1. Building bridges, connections, community, and capacity
  2. Sharing experiences, examples, challenges, and good practice
  3. Strengthening the evidence base on MERL Tech and ICT4D approaches
  4. Facing our challenges and shortcomings
  5. Exploring the future of MERL

As always, sessions were related to: technology for MERL, MERL of ICT4D and Digital Development programs, MERL of MERL Tech, digital data for adaptive decisions/management, ethical and responsible data approaches and cross-disciplinary community building.

Big Data and Evaluation Session. Photo by Christopher Neu.

Sessions included plenaries, lightning talks and breakout sessions. You can find a list of sessions here, including any presentations that have been shared by speakers and session leads. (Go to the agenda and click on the session of interest. If we have received a copy of the presentation, there will be a link to it in the session description).

One topic that we explored more in-depth over the two days was the need to get better at measuring ourselves and understanding both the impact of technology on MERL (the MERL of MERL Tech) and the impact of technology overall on development and societies.

As Anahi Ayala Iacucci said in her opening talk — “let’s think less about what technology can do for development, and more about what technology does to development.” As another person put it, “We assume that access to tech is a good thing and immediately helps development outcomes — but do we have evidence of that?”

Feedback from participants

Some 17.5% of participants filled out our post-conference feedback survey, and 70% of them rated their experience either “awesome” or “good”. Another 7% of participants rated individual sessions through the “Sched” app, with an average session satisfaction rating of 8.8 out of 10.

Topics that survey respondents suggested for next time include: more basic tracks and more advanced tracks, more sessions relating to ethics and responsible data and a greater focus on accountability in the sector.  Read the full Feedback Report here!

What’s next? State of the Field Research!

In order to arrive at an updated sense of where the field of technology-enabled MERL is, a small team of us is planning to conduct some research over the next year. At our opening session, we did a little crowdsourcing to gather input and ideas about what the most pressing questions are for the “MERL Tech” sector.

We’ll be keeping you informed here on the blog about this research and welcome any further input or support! We’ll also be sharing more about individual sessions here.

MERL on the Money: Are we getting funding for data right?

By Paige Kirby, Senior Policy Advisor at Development Gateway

Time for a MERL pop quiz: Out of US $142.6 billion spent in ODA each year, how much goes to M&E?

A)  $14.1-17.3 billion
B)  $8.6-10 billion
C)  $2.9-4.3 billion

It turns out, the correct answer is C. An average of only $2.9-$4.3 billion — or just 2-3% of all ODA spending — goes towards M&E.

That’s all we get. And despite the growing breadth of logframes and depths of donor reporting requirements, our MERL budgets are likely not going to suddenly scale up.

So, how can we use our drop in the bucket better, to get more results for the same amount of money?

At Development Gateway, we’ve been doing some thinking and applied research on this topic, and have three key recommendations for making the most of MERL funding.

Teamwork

Image Credit: Kjetil Korslien CC BY NC 2.0

When seeking information for a project baseline, midline, endline, or anything in between, it has become second nature to budget for collecting (or commissioning) primary data ourselves.

Really, it would be more cost-and time-effective for all involved if we got better at asking peers in the space for already-existing reports or datasets. This is also an area where our donors – particularly those with large country portfolios – could help with introductions and matchmaking.

Consider the Public Option

Image Credit: Development Gateway

And speaking of donors as a second point – why are we implementers responsible for collecting MERL relevant data in the first place?

If partner governments and donors invested in country statistical and administrative data systems, we implementers would not have such incentive or need to conduct one-off data collection.

For example, one DFID Country Office we worked with noted that a lack of solid population and demographic data limited their ability to monitor all DFID country programming. As a result, DFID decided to co-fund the country’s first census in 30 years – which benefited DFID and non-DFID programs.

The term “country systems” can sound a bit esoteric, pretty OECD-like – but it really can be a cost-effective public good, if properly resourced by governments (or donor agencies), and made available.

Flip the Paradigm

Image Credit: Rafael J M Souza CC BY 2.0

And finally, a third way to get more bang for our buck is – ready or not – Results Based Financing, or RBF. RBF is coming (and, for folks in health, it’s probably arrived). In an RBF program, payment is made only when pre-determined results have been achieved and verified.

But another way to think about RBF is as an extreme paradigm shift of putting M&E first in program design. RBF may be the shake-up we need, in order to move from monitoring what already happened, to monitoring events in real-time. And in some cases – based on evidence from World Bank and other programming – RBF can also incentivize data sharing and investment in country systems.

Ultimately, the goal of MERL should be using data to improve decisions today. Through better sharing, systems thinking, and (maybe) a paradigm shake-up, we stand to gain a lot more mileage with our 3%.

 

MERL Tech London 2018 Agenda is out!

We’ve been working hard over the past several weeks to finish up the agenda for MERL Tech London 2018, and it’s now ready!

We’ve got workshops, panels, discussions, case studies, lightning talks, demos, community building, socializing, and an evening reception with a Fail Fest!

Topics range from mobile data collection, to organizational capacity, to learning and good practice for information systems, to data science approaches, to qualitative methods using mobile ethnography and video, to biometrics and blockchain, to data ethics and privacy and more.

You can search the agenda to find the topics, themes and tools that are most interesting, identify sessions that are most relevant to your organization’s size and approach, pick the session methodologies that you prefer (some of us like participatory and some of us like listening), and to learn more about the different speakers and facilitators and their work.

Tickets are going fast, so be sure to snap yours up before it’s too late! (Register here!)

View the MERL Tech London schedule & directory.

 

MERL Tech 101: Google forms

by Daniel Ramirez-Raftree, MERL Tech volunteer

In his MERL Tech DC session on Google Forms, Samhir Vesdev from IREX led a hands-on workshop on Google Forms and laid out some of the software’s capabilities and limitations. Much of the session focused on Google Forms’ central concepts and the practicality of building a form.

At its most fundamental level, a form is made up of several sections, and each section is designed to contain a question or prompt. The centerpiece of a section is the question cell, which is, as one would imagine, the cell dedicated to the question. Next to the question cell there is a drop down menu that allows one to select the format of the question, which ranges from multiple-choice to short answer.


At the bottom right hand corner of the section you will find three dots arranged vertically. When you click this toggle, a drop-down menu will appear. The options in this menu vary depending on the format of the question. One common option is to include a few lines of description, which is useful in case the question needs further elaboration or instruction. Another is the data validation option, which restricts the kinds of text that a respondent can input. This is useful in the case that, for example, the question is in a short answer format but the form administrators need the responses to be limited numerals for the sake of analysis.

The session also covered functions available in the “response” tab, which sits at the top of the page. Here one can find a toggle labeled “accepting responses” that can be turned off or on depending on the needs for the form.

Additionally, in the top right corner this tab, there are three dots arranged vertically, and this is the options menu for this tab. Here you will find options such as enabling email notifications for each new response, which can be used in case you want to be alerted when someone responds to the form. Also in this drop down, you can click “select response destination” to link the Google Form with Google Sheets, which simplifies later analysis. The green sheets icon next to the options drop-down will take you to the sheet that contains the collected data.

Other capabilities in Google Forms include the option for changing the color scheme, which you can access by clicking the palette icon at the top of the screen. Also, by clicking the settings button at the top of the screen you can limit the response amount to restrict people’s ability to skew the data by submitting multiple responses, or you can enable response editing after submission to allow respondents to go in and correct their response after submitting it.

Branching is another important tool in Google Forms. It can be used in the case that you want a particular response to a question (say, a multiple choice question) to lead the respondent to another related question only if they respond in a certain way.

For example, if in one section you ask “did you like the workshop?” with the answer options being “yes” and “no,” and if you want to know what they didn’t like about the workshop only if they answer “no,” you can design the sheet to take the respondent to a section with the question “what didn’t you like about the workshop?” only in the case that they answer “no,” and then you can design the sheet to bring the respondent back to the main workflow after they’ve answered this additional question.

To do this, create at least two new sections (by clicking “add section” in the small menu to the right of the sections), one for each path that a person’s response will lead them down. Then, in the options menu on the lower right hand side select “go to section based on answer” and using the menu that appears, set the path that you desire.

These are just some of the tools that Google Forms offers, but with just these it is possible to build an effective form to collect the data you need. Samhir ended with a word of caution that Google has been known to shut down popular apps, so you should be wary about building an organization strategy around Google Forms.

M&E Squared: Evaluating M&E Technologies

by Roger Nathanial Ashby, Co-Founder & Principal Consultant, OpenWise

The universe of MERL Tech solutions has grown exponentially. In 2008 monitoring and evaluating tech within global development could mostly be confined to mobile data collection tools like Open Data Kit (ODK), and Excel spreadsheets to analyze and visualize survey data. In the intervening decade a myriad of tools, companies and NGOs have been created to advance the efficiency and effectiveness of monitoring, evaluation, research and learning (MERL) through the use of technology. Whether it’s M&E platforms or suites, satellite imagery, remote sensors, or chatbots, new innovations are being deployed every day in the field.

However, how do we evaluate the impact when MERL Tech is the intervention itself? That was the question and task put to participants of the “M&E Squared” workshop at MERL Tech 2017.

Workshop participants were separated into three groups that were each given a case study to discuss and analyze. One group was given a case about improving the learning efficiency of health workers in Liberia through the mHero Health Information System (HIS). The system was deployed as a possible remedy to some of the information communication challenges identified during the 2014 West African Ebola outbreak. A second group was given a case about the use of RapidPro to remind women to attend antenatal care (ANC) for preventive malaria medicine in Guinea. The USAID StopPalu project goal was to improve the health of infants by increasing the percent of women attending ANC visits. The final group was given a case about using remote images to assist East African pastoralists. The Satellite Assisted Pastoral Resource Management System (SAPARM) informs pastoralists of vegetation through remote sensing imagery so they can make better decisions about migrating their livestock.

After familiarizing ourselves with the particulars of the case studies, each group was tasked to present their findings to all participants after pondering a series of questions. Some of the issues under discussion included

(1) “How would you assess your MERL Tech’s relevance?”

(2) “How would you evaluate the effectiveness of your MERL Tech?”

(3) “How would you measure efficiency?” and

(4) “How will you access sustainability?”.

Each group came up with some innovative answers to the questions posed and our facilitators and session leads (Alexandra Robinson & Sutyajeet Soneja from USAID and Molly Chen from RTI) will soon synthesize the workshop findings and notes into a concise written brief for the MERL Tech community.

Before the workshop closed we were all introduced to the great work done by SIMLab (Social Impact Lab) in this area through their SIMLab Monitoring and Evaluation Framework. The framework identifies key criteria for evaluating M&E including:

  1. Relevance – The extent to which the technology choice is appropriately suited to the priorities and capacities of the context of the target group or organization.
  2. Effectiveness – A measure of the extent to which an information and communication channel, technology tool, technology platform, or a combination of these attains its objectives.
  3. Efficiency – Measure of the outputs (qualitative and quantitative) in relation to the inputs.
  4. Impact – The positive and negative changed produced by technology introduction, change in a technology tool, or platform on the overall development intervention (directly or indirectly; intended or unintended).
  5. Sustainability – Measure of whether the benefits of a technology tool or platform are likely to continue after donor funding has been withdrawn.
  6. Coherence – How related is the technology to the broader policy context (development, market, communication networks, data standards & interoperability mandates, and national & international law) within which the technology was developed and implemented.

While it’s unfortunate that SIMLab stopped most operations in early September 2017, their exceptional work in this and other areas lives on and you can access the full framework here.

I learned a great deal in this session from the facilitators and my colleagues attending the workshop. I would encourage everyone in the MERL Tech community to take the ideas generated during this workshop and the great work done by SIMLab into their development practice. We certainly intend to integrate much of these insights into our work at OpenWise. Read more about “The Evidence Agenda” here on SIMLab’s blog. 

 

 

 

You can’t have Aid…without AI: How artificial intelligence may reshape M&E

by Jacob Korenblum, CEO of Souktel Digital Solutions

Photo: wikipedia.org/

Potential—And Risk

The rapid growth of Artificial Intelligence—computers behaving like humans, and performing tasks which people usually carry out—promises to transform everything from car travel to personal finance. But how will it affect the equally vital field of M&E? As evaluators, most of us hate paper-based data collection—and we know that automation can help us process data more efficiently. At the same time, we’re afraid to remove the human element from monitoring and evaluation: What if the machines screw up?

Over the past year, Souktel has worked on three areas of AI-related M&E, to determine where new technology can best support project appraisals. Here are our key takeaways on what works, what doesn’t, and what might be possible down the road.

Natural Language Processing

For anyone who’s sifted through thousands of Excel entries, natural language processing sounds like a silver bullet: This application of AI interprets text responses rapidly, often matching them against existing data sets to find trends. No need for humans to review each entry by hand! But currently, it has two main limitations: First, natural language processing works best for sentences with simple syntax. Throw in more complex phrases, or longer text strings, and the power of AI to grasp open-ended responses goes downhill. Second, natural language processing only works for a limited number of (mostly European) languages—at least for now. English and Spanish AI applications? Yes. Chichewa or Pashto M&E bots? Not yet. Given these constraints, we’ve found that AI apps are strongest at interpreting basic misspelled answer text during mobile data collection campaigns (in languages like English or French). They’re less good at categorizing open-ended responses by qualitative category (positive, negative, neutral). Yet despite these limitations, AI can still help evaluators save time.

Object Differentiation

AI does a decent job of telling objects apart; we’ve leveraged this to build mobile applications which track supply delivery more quickly & cheaply. If a field staff member submits a photo of syringes and a photo of bandages from their mobile, we don’t need a human to check “syringes” and “bandages” off a list of delivered items. The AI-based app will do that automatically—saving huge amounts of time and expense, especially during crisis events. Still, there are limitations here too: While AI apps can distinguish between a needle and a BandAid, they can’t yet tell us whether the needle is broken, or whether the BandAid is the exact same one we shipped. These constraints need to be considered carefully when using AI for inventory monitoring.

Comparative Facial Recognition

This may be the most exciting—and controversial—application of AI. The potential is huge: “Qualitative evaluation” takes on a whole new meaning when facial expressions can be captured by cameras on mobile devices. On a more basic level, we’ve been focusing on solutions for better attendance tracking: AI is fairly good at determining whether the people in a photo at Time A are the same people in a photo at Time B. Snap a group pic at the end of each community meeting or training, and you can track longitudinal participation automatically. Take a photo of a larger crowd, and you can rapidly estimate the number of attendees at an event.

However, AI applications in this field have been notoriously bad at recognizing diversity—possibly because they draw on databases of existing images, and most of those images contain…white men. New MIT research has suggested that “since a majority of the photos used to train [AI applications] contain few minorities, [they] often have trouble picking out those minority faces”. For the communities where many of us work (and come from), that’s a major problem.

Do’s and Don’ts

So, how should M&E experts navigate this imperfect world? Our work has yielded a few “quick wins”—areas where Artificial Intelligence can definitely make our lives easier: Tagging and sorting quantitative data (or basic open-ended text), simple differentiation between images and objects, and broad-based identification of people and groups. These applications, by themselves, can be game-changers for our work as evaluators—despite their drawbacks. And as AI keeps evolving, its relevance to M&E will likely grow as well. We may never reach the era of robot focus group facilitators—but if robo-assistants help us process our focus group data more quickly, we won’t be complaining.

MERL Tech Round Up | November 1, 2017

It’s time for our second MERL Tech Round Up, a monthly compilation of MERL Tech News!

On the MERL Tech Blog:

We’ve been posting session summaries from MERL Tech DC. Here are some posts you may have missed in October:

Stuff we’re reading/watching/bookmarking:

There’s quite a bit to learn both in our “MERL / Tech” sector and in related sectors whose experiences are relatable to MERL Tech. Some thought-provoking pieces here:

Events:

Jobs

Head over to ICT4DJobs for a ton of tech related jobs. Here are some interesting ones for folks in the MERL Tech space:

If you’re not already signed up to the Pelican Initiative: Platform for Evidence-based Learning & Communication for Social Change, we recommend doing that. You will find all kinds of MERL and MERLTech related jobs and MERL-related advice. (Note: the Platform is an extremely active forum, so you may want to adjust your settings to receive weekly compilations).

Tag us on Twitter using #MERLTech if you have resources, events, or other news you’d like us to include here!

Don’t forget to submit your session ideas for MERL Tech London by November 10th!