MERL Tech Maturity Models


by Maliha Khan, a development practitioner in the fields of design, measurement, evaluation and learning. Maliha led the Maturity Model sessions at MERL Tech DC and Linda Raftree, independent consultant and lead organizer of MERL Tech.

MERL Tech is a platform for discussion, learning and collaboration around the intersection of digital technology and Monitoring, Evaluation, Research, and Learning (MERL) in the humanitarian and international development fields. The MERL Tech network is multidisciplinary and includes researchers, evaluators, development practitioners, aid workers, technology developers, data analysts and data scientists, funders, and other key stakeholders.

One key goal of the MERL Tech conference and platform is to bring people from diverse backgrounds and practices together to learn from each other and to coalesce MERL Tech into a more cohesive field in its own right — a field that draws from the experiences and expertise of these various disciplines. MERL Tech tends to bring together six broad communities:

  • traditional M&E practitioners, who are interested in technology as a tool to help them do their work faster and better;
  • development practitioners, who are running ICT4D programs and beginning to pay more attention to the digital data produced by these tools and platforms;
  • business development and strategy leads in organizations who want to focus more on impact and keep their organizations up to speed with the field;
  • tech people who are interested in the application of newly developed digital tools, platforms and services to the field of development, but may lack knowledge of the context and nuance of that application
  • data people, who are focused on data analytics, big data, and predictive analytics, but similarly may lack a full grasp of the intricacies of the development field
  • donors and funders who are interested in technology, impact measurement, and innovation.

Since our first series of Technology Salons on ICT and M&E in 2012 and the first MERL Tech conference in 2014, the aim has been to create stronger bridges between these diverse groups and encourage the formation of a new field with an identity of its own — In other words, to move people beyond identifying as, say, an “evaluator who sometimes uses technology,” and towards identifying as a member of the MERL Tech space (or field or discipline) with a clearer understanding of how these various elements work together and play off one another and how they influence (and are influenced by) the shifts and changes happening in the wider ecosystem of international development.

By building and strengthening these divergent interests and disciplines into a field of their own, we hope that the community of practitioners can begin to better understand their own internal competencies and what they, as a unified field, offered to international development. This is a challenging prospect, as beyond their shared use of technology to gather, analyze, and store data and an interest in better understanding how, when, why, where, (etc.) these tools work for MERL and for development/humanitarian programming, there aren’t many similarities between participants.

At the MERL Tech London and MERL Tech DC conferences in 2017, we made a concerted effort to get to the next level in the process of creating a field. In London in February, participants created a timeline of technology and MERL and identified key areas that the MERL Tech community could work on strengthening (such as data privacy and security frameworks and more technological tools for qualitative MERL efforts). At MERL Tech DC, we began trying to understand what a ‘maturity model’ for MERL Tech might look like.

What do we mean by a ‘maturity model’?

Broadly, maturity models seek to qualitatively assess people/culture, processes/structures, and objects/technology to craft a predictive path that an organization, field, or discipline can take in its development and improvement.

Initially, we considered constructing a “straw” maturity model for MERL Tech and presenting it at the conference. The idea was that our straw model’s potential flaws would spark debate and discussion among participants. In the end, however, we decided against this approach because (a) we were worried that our straw model would unduly influence people’s opinions, and (b) we were not very confident in our own ability to construct a good maturity model.

Instead, we opted to facilitate a creative space over three sessions to encourage discussion on what a maturity model might look like, and what it might contain. Our vision for these sessions was to get participants to brainstorm in mixed groups containing different types of people- we didn’t want small subsets of participants to create models independently without the input of others.

In the first session, “Developing a MERL Tech Maturity Model”, we invited participants to consider what a maturity model might look like. Could we begin to imagine a graphic model that would enable self-evaluation and allow informed choices about how to best develop competencies, change and adjust processes and align structures in organizations to optimize using technology for MERL or indeed other parts of the development field?

In the second session, “Where do you sit on the Maturity Model?” we asked participants to use the ideas that emerged from our brainstorm in the first session to consider their own organizations and work, and compare them against potential maturity models. We encouraged participants to assess themselves using green (young sapling) to yellow (somewhere in the middle) and red (mature MERL Tech ninja!) and to strike up a conversation with other people in the breaks on why they chose that color.

In our third session, “Something old, something new”, we consolidated and synthesized the various concepts participants had engaged with throughout the conference. Everyone was encouraged to reflect on their own learning, lessons for their work, and what new ideas or techniques they may have picked up on and might use in the future.

The Maturity Models

As can be expected, when over 300 people take marker and crayons to paper, many a creative model emerges. We asked the participants to gallery walk the models over the next day during the breaks and vote on their favorite models.

We won’t go into detail of what all the 24 the models showed, but there were some common themes that emerged from the ones that got the most votes – almost all maturity models include dimensions (elements, components) and stages, and a depiction of potential progression from early stages to later stages across each dimension. They all also showed who the key stakeholders or players were, and some had some details on what might be expected of them at different stages of maturity.

Two of the models (MERLvana and the Data Appreciation Maturity Model – DAMM) depicted the notion that reaching maturity was never really possible and the process was an almost infinite loop. As the presenters explained MERLvana “it’s an impossible to reach the ideal state, but one must keep striving for it, in ever closer and tighter loops with fewer and fewer gains!”

“MERL-tropolis” had clearly defined categories (universal understanding, learning culture and awareness, common principles, and programmatic strategy) and the structures/ buildings needed for those (staff, funding, tools, standard operating procedures, skills).

The most popular was “The Data Turnpike” which showed the route from the start of “Implementation with no data” to the finish line of “Technology, capacity and interest in data and adaptive management” with all the pitfalls along the way (misuse, not timely, low ethics etc) marked to warn of the dangers.

As organizers of the session, we found the exercises both interesting and enlightening, and we hope they helped participants to begin thinking about their own MERL Tech practice in a more structured way. Participant feedback on the session was on polar extremes. Some people loved the exercise and felt that it allowed them to step back and think about how they and their organization were approaching MERL Tech and how they could move forward more systematically with building greater capacities and higher quality work. Some told us that they left with clear ideas on how they would work within their organizations to improve and enhance their MERL Tech practice, and that they had a better understanding of how to go about that. A few did not like that we had asked them to “sit around drawing pictures” and some others felt that the exercise was unclear and that we should have provided a model instead of asking people to create one. [Note: This is an ongoing challenge when bringing together so many types of participants from such diverse backgrounds and varied ways of thinking and approaching things!]

We’re curious if others have worked with “maturity models” and if they’ve been applied in this way or to the area of MERL Tech before. What do you think about the models we’ve shared? What is missing? How can we continue to think about this field and strengthen our theory and practice? What should we do at MERL Tech London in March 2018 and beyond to continue these conversations?

Leave a Reply

Your email address will not be published. Required fields are marked *